
A Differentiable CGA Shape Procedural System
Victor Ceballos Inza
http://people.bath.ac.uk/vci20/

Department of Computer Science,
University of Bath

Yongliang Yang
http://www.yongliangyang.net

Department of Computer Science,
University of Bath

Tom Kelly
http://twak.org

School of Computing,
University of Leeds

Urban space design has been of continued interest for several centuries
and procedural modelling is a tool that successfully addresses the chal-
lenges in the generation of cities. Procedural production systems are tra-
ditionally grammar-based, each one virtually describing a new program-
ming language. Content generators using these tools need not only to have
certain artistic sensitivity but also an ability to write computer programs.

There have been two recent directions that aim to ease the use of pro-
cedural systems. The first one, inverse procedural modelling, includes
both systems that generate the production rules from square one [3, 5],
and techniques that fit the parameters of existing grammars [6, 7]. The
second one can be denoted interactive procedural modelling and intro-
duces tools that leverage the troublesome process of parameter tuning of
existing grammars, such as handles and local edits [1, 2].

We introduce in this paper the concept of differentiable procedural
modelling, which enhances inverse modelling with tools from interactive
methods. Procedural models have lots of confusing parameters which
only the original programmer understands. We introduce an interactive
tool which lets users perform direct modifications on the geometry of
models, while it fits the parameters of a grammar to match those mod-
ifications. Formally, a differentiable procedural system is a parametrised
production system [8], that is, a system composed of:

• An algebra of objects U , defined as ⟨U,+,−,F ≤⟩, where the set
U is closed under the insertion + and deletion − operations and all
transformations f ∈ F . An object u ∈U is said to occur in another
object v ∈U if and only if there exists a transformation f ∈ F such
that f (u)≤ v.

• A set of production rules R ⊆U ×U .

• A set of initial objects I ⊆U .

• An interpretative mechanism, by which objects are generated by
the repeated application of production rules to an initial object.
Given an initial object w ∈U , a production rule u → v, and a vari-
able assignment g, if there exists a transformation f ∈ F such that
f (u)≤ w, then the production rule can produce the new object:

[w− f (g(u))]+ f (g(v))
such that:

• for each shape w ∈U , each production rule u → v ∈ R, each trans-
formation f ∈ F and each variable assignment g, we have that for
every object τ ∈U with

τ ≤ [w− f (g(u))]+ f (g(v)) ∈U
we can compute its rate of change (a.k.a., differentiate τ) with re-
spect every variable assignment g∗ applied in the generation of the
shape

[w− f (g(u))]+ f (g(v)) ∈U

For a geometric interpretation of a differentiable procedural system,
we develop a C++ implementation of CGA Shape grammars [4]. CGA
Shape is a language for the procedural modelling of architecture. Our
system works as follows. Given a set p = { pi }n

i=1 of n input parameters,
the procedural systems produces a geometry G. The user can change the
parameters p to compute G, as in forward modelling. Interactively, the
user can select with the mouse a vertex v in G and displace it to a different
location w (inverse modelling), and our system automatically updates p
to satisfy such a modification. We solve the minimization problem

p∗ = arg min
p∈Rn

d(v(p),w)

for some distance measure d, which defaults to an Euclidean metric. Op-
tionally, each parameter value pi can be constrained within a plausible
range [pmin

i , pmax
i] or fixed to the current value if it corresponds to some

feature of the geometry G that should stay constant. The (local) optimum
is computed by a standard gradient-based non-linear function optimisa-
tion routine using a quasi-Newton strategy.

Figure 1: Illustration of the inverse modelling pipeline in our system. The
user can select a vertex on the model and directly move it to a new loca-
tion. The system updates the geometry according to the new parameters.
Note that selected feature has kept its relative location (4th row, 2nd col).

The partial derivative of the vertex v with respect to each parameter pi
in the grammar is computed through the repeated application of the chain
rule to the execution tree of G. G can be either be a initial shape G ∈ I
or be the result of a (or several) production rule. In the former case, G is
a basic shape (polygon, polyhedra, circles, cylinders, etc.) and v can be
expressed in terms of this shape’s parameters. In the latter, G (or rather
the subshape of G containing v) is the result of applying some operator
op to some other geometry G′:

v ∈ op(G′,{ pi }r
i=1)⊆ G

where the subset { pi }r
i=1 of p contains exactly only the grammar param-

eters associated with op. Then the partial derivative of v is

∂v
∂ pi

=
m

∑
j=1

∂v
∂u j

∂u j

∂ pi
+

r

∑
j=1

∂v
∂q j

∂q j

∂ pi
for i ∈ {1,2, ...,n}

where {u j }m
j=1 are all the defining vertices in G′, provided it is a polyhe-

dron. If not, and G′ is an analytical shape instead, these can be replaced

Figure 2: Sample of our results

by the defining shape parameters (ra-
dius, axis, etc.). These derivatives are
computed manually using automatic
differentiation.

Our system compares to [7] as both
couple forward modelling with auto-
matic inverse parameter fitting, but we
remove the extra layer of urban indica-
tors and allow direct modifications of
the geometry. We do not use an approx-
imation function for sampling and in-
stead compute exact analytical deriva-
tives.

[1] T. Kelly, P. Wonka, and P. Müller. Interactive Dimensioning of Para-
metric Models. In Computer Graphics Forum, pages 117–129, 2015

[2] M. Lipp, P. Wonka, and M. Wimmer. Interactive Visual Editing of
Grammars for Procedural Architecture. In ACM TOG, page 102, 2008

[3] A. Martinovic and L. Van Gool. Bayesian Grammar Learning for
Inverse Procedural Modeling. IEEE CVPR, pages 201–208, 2013

[4] P. Müller, P. Wonka, S. Haegler, et al. Procedural Modeling of Build-
ings. In ACM SIGGRAPH 2006 Papers, pages 614–623, 2006

[5] O. Št’ava, B. Beneš, R. Měch, et al. Inverse Procedural Modeling by
Automatic Generation of L-systems. In Computer Graphics Forum,
pages 665–674, 2010

[6] J. O. Talton, Y. Lou, S. Lesser, et al. Metropolis Procedural Modeling.
In ACM TOG, pages 11:1–11:14, 2011

[7] C. A. Vanegas, I. Garcia-Dorado, D. G. Aliaga, et al. Inverse design
of urban procedural models. In ACM TOG, page 168, 2012

[8] P. Wonka, M. Wimmer, F. Sillion, et al. Instant Architecture. In ACM
SIGGRAPH 2003 Papers, pages 669–677, 2003

