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Introduction. A classic problem in computer vision is to reconstruct 3D
faces from monocular image and video data. This needs disentangling
scene and face parameters such as light, facial geometry (pose, identity, and
expression), and reflectance, while accounting for camera depth ambiguity.
Image pixel saturation due to self-shadows and specularity further add to
the problem complexity.
To model the problem, optimization based [2] and more recently deep
learning based [6] methods have been proposed. A photo-consistency loss
difference between a parametric 3D face render and input facial image
helps estimate the scene and face parameters. Often, the optimization
cost is regularized with statistical priors and mathematical models of the
parameters. [7] train a deep neural net to reconstruct faces and rely on
high-quality training data obtained via a photometric camera rig. Both [7]
and [3] present reflectance models with diffuse and specular albedo. They
do not handle self-shadows explicitly.
We present a novel method to model 3D faces from monocular images,
with parameterized ray traced scene light(s), and explicit disentangling of
facial geometry (pose, identity and expression), reflectance (diffuse and
specular albedo), and self-shadows (see Figure 2). We take inspiration
from [1] and model the scene light as a virtual light stage with pre-oriented
area lights. This setup is used in conjunction with a differentiable Monte-
Carlo ray tracer [4], to optimize the scene and face parameters. Due to the
disentangling of the parameters, we can not only obtain robust results, but
also gain explicit control over them, with several practical applications.
For example, we can change facial expression with accurate resultant
self-shadows or relight the scene and obtain accurate specular reflection.
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Figure 1: A virtual
light stage

Face Modeling. Similar to [2], our method
follows an optimization-based face reconstruc-
tion methodology. [2, 6] model scene light
via spherical-harmonics, and reflectance via the
Lambertian (diffuse albedo only) model. Con-
sequently, they cannot handle self-shadows and
specularities. Image pixels with saturated color
values due to self-shadows or specularity can lead
to an underconstrained photo-consistency loss
based optimization. Here, face geometry vertices
corresponding to saturated pixel color values can
deform the geometry unnaturally. We model re-
flectance via the Cook-Torrance BRDF (diffuse
and specular albedo) [5], and use physically ac-
curate ray tracing to handle parameterized area

lights and resultant self-shadows.
In order to render physically accurate images via ray tracing, scene ge-
ometry and light must be known. To this end, we create a parameterized
virtual light stage with N fixed oriented (pointing towards origin) area
lights placed on vertex positions of an isotropically sampled hemisphere
(see Figure 1). Parameterized face geometry is placed at the light stage’s
origin, facing the camera. We then employ [4]’s differentiable ray tracing
method to render an image. Finally, during face reconstruction optimiza-
tion, backpropagation automatically calculates the gradient for the various
parameters w.r.t photo-consistency cost loss between the input and ren-
dered images.
The scene light parameters are the color intensities {li} ∈N(= 20) and li ∈
R3. A light-off (Fig 1) implies intensity 0T . The face geometry parameters
are α ∈ R80 which control a 3D model morphable based facial identity,
β ∈ R90 controls facial blend shape expressions, and [R t] ∈ R6 the ge-
ometry transform. The skin reflectance model is given by Cook-Torrance
reflectance fr = kd flambertian(l j,δ ,ni)+ks fcooktorrance(l j,cspec,ni). Here,
δ ∈ R80 are the morphable model’s vertex color albedo, ni(α,β ,R, t) the
vertex normal and cspec ∈ R32×32 are the pixel values of a vectorized
gray-scale specular texture map.

Optimization. The photo-consistency optimization is given by:
argmin Edata +w1Eprior +w2Elight , (1)

where Edata = ∑i∈I ||pT
i −pR

i ||22 and Elight = ∑
N
j=0 ||l j−m j||22. The vec-

tors pT
i ,p

R
i are ray traced and real image (I) pixel color values, respectively
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Figure 2: (From left to right) Given an input image, we optimize the scene
light (shown via spherical environmental map), reflectance (diffuse and
specular albedo) parameters with self-shadows. Top: We optimize for
uniform color light(s). The 6th column shows updated shadows, as we
transform the geometry and change the facial expression. Bottom: We
optimize for multi color lights. The 6th last column shows a relit render
with accurate reflectance and shadows, while the last column shows the
reconstructed albedo and illumination via. Garrido et al. [2]’s method.

and m j is the mean intensity of the jth light. In order to make the opti-
mization tractable, we use landmark and statistical prior Eprior defined
in [2]. Our method relies on geometry, reflectance, and light parameters
to calculate the final render pixel color values pT

i = F( fr, l j,α,β ,R, t),
where F is the Monte-Carlo estimator of the lighting equation. Generally,
it is desirable to minimize light flux, to this end, we add a light flux conser-
vation regularizer Elight to Equation 1.
We optimize the parameter in a sequential strategy as described in [2]’s
Algorithm 1 - Multi-Step Optimization Strategy. In addition, we add the fol-
lowing steps to the optimization sequence: (1) Cook-Torrance reflectance
based specularity, and (2) light (l j) optimization. The ‘shadowed’ regions
of the 3D face geometry are calculated by the ray tracer automatically.

Results and Conclusion. In Figure 2 (Top), we show face reconstruction
with disentangled reflectance (diffuse & specular albedo), light (visualized
as a spherical environment map), geometry (identity & expression), and
self-shadow, especially near the nose region. While, Figure 2 (Bottom)
shows accurate self-shadow based on optimized multi-color lights. Notice
how the change in scene light (6th column) results in correct updated re-
flectance & self-shadows. Disentangled light, reflectance & shadows result
in accurate reconstruction of face geometry regions that correspond to
image patches with saturated pixel colors (due to shadows or specularities)
and does not deform geometry unnaturally.
We present a novel strategy to automatically reconstruct faces with ray
traced light, specularities, and shadows. The method robustly handles
scenes with strong directional lights, partial occlusion due to shadows and
specularities. By using a differentiable ray tracer, we accurately optimize
the photo-consistency loss.
However, our method is limited by the ray tracer’s sampling rate. A low
sampling rate results in a noisy render, while higher sampling rate results in
slow optimization convergence. Another limitation is that our reflectance
model does not model skin’s subsurface scattering properties.
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