
Accelerating Handheld Object Pose Estimation on Smartphones in Unity with TensorFlow Lite

Valentin Miu
vmiu@bournemouth.ac.uk

Centre for Digital Entertainment, Bournemouth University
PlayFusion Ltd., Cambridge

Oleg Fryazinov
ofryazinov@bournemouth.ac.uk

The National Centre for Computer Animation,
Bournemouth University

1 Introduction

Recent developments in computer vision methods and techniques were
boosted by the application of machine learning methods to increase pre-
cision. In particular, CV techniques found a good number of applications
with relation to augmented and mixed reality (AR/MR). However, imple-
mentation depends on the frameworks which are often aimed at desktop
machines, not mobile devices.

In this work, we discuss the 6DoF tracking of handheld objects, which
is of particular interest to augmented reality applications. This field re-
quires precise pose estimation obtained in real-time to ensure user-friendly
interaction with mixed reality scenes. Also, we focus on smartphones as
our target devices, which requires our approach to be low-resource and
computationally efficient. In particular, we consider the tracking of a
handheld hair curler, to train inexperienced users in its proper operation.

We use the C API and JNI of TensorFlow Lite and leverage its An-
droid and iOS GPU support, as well as Unity3D’s support for complex
AR scenes. Rapid pose inference is implemented on both smartphone
GPUs and MacOS/Windows CPUs through a native C++ Unity3D plu-
gin. Additionally, several custom or off-the-shelf were run through the
plugin, with minimal code changes to the Unity scripts.

2 Method and Results

The pose estimation approach is based on [3]. This uses a YOLOv2
network with a darknet-19 backbone [2], with the last convolution layer
modified to output the 2D projection positions of the object centroid and
the 3D bounding box corners, as well as the object class (here open/closed),
and detection and class confidences. The 6DoF pose is then retrieved us-
ing a perspective-and-point algorithm. To optimize this model for mobile
devices, a smaller existing feature extractor (tinyYOLOv2) is modified
and trained. Given the perceived lack of TensorFlow Lite support for the
LeakyReLU activations of the backbone, all activations were changed to
ReLU (this was later shown to be unnecessary, given the equivalence of
the Lite-supported PReLU operation at inference time). Although the
LeakyReLU-activated ImageNet-pretrained tinyYOLOv2 weights were
used as a starting point, this did not significantly affect convergence.

Figure 1: An cropped unkeyed source frame (a), the keyed frame with a
randomized background (b), and the segmented curler frame with a ran-
domized background (c). Only the latter two were used for training.

The training image dataset were frames from videos, most with green-
screened backgrounds, taken with a variety of cameras. The pose of
the curler and the opening angle were annotated manually, using a cus-
tom Unity3D tool to align a CAD model of the curler to a dataset video
frame. Using an optical flow algorithm, frames near manually annotated
"keyframes" were able to be annotated automatically, boosting the size of
the dataset from 2400 to 16700 images. The green-screen backgrounds
were keyed out and replaced with random images from the Pascal VOC
2012 dataset [1]. Given the similarity between frames and the small num-
ber of different subjects, the segmented curlers alone were overlaid onto
random backgrounds (see Figure 1) and added to the greenscreen-keyed
images, to allow for generalization during training. This brought the ef-
fective dataset size to 33400 images. Since some images were portrait
and some were landscape, they were padded to a square input size during
training.

Training was done on a Titan Xp and a subset of a 8-GPU NVIDIA
RTX 2080 Ti cluster. Conversion was done manually by re-creating the
graph in TensorFlow and copying the weights, and then converting to Lite.

The tinyYOLOv2 model achieved real-time performance on both iOS
and Android devices for an input size of 224x224, and fast performance
for a size of 512x512 (Table 1). Although reasonably successful in the
approximation of yaw and pitch, the method has as of yet not proven
successful in estimating roll angle ground truth, in part due to lack of
visual curler feature variation with roll angle variation, especially when
tested on unseen data in in-app testing.

GPU fwd. pass
(prep.)

Per-point RMS error
for 2D projection

iPhone XS (224)
OnePlus 6 (224)

35 ms (12 ms)
70 ms (10 ms)

10.93 px (48.7·10−3 ·224)

iPhone XS (512)
OnePlus 6 (512)

90 ms (65 ms)
125 ms (30 ms)

4.32 px (8.44·10−3 ·512)

Table 1: Forward pass and preprocessing step latency. Since the latter is
done asynchronously on the CPU, the forward pass represents the time
between subsequent annotation outputs, while the sum of the two is the
time between frame capture and annotation output.

Given that the bounding box corners were often far from the curler,
causing an offset from the relevant features, inference of 12 manually
selected points on the curler, as well as the object centroid, was attempted.
This did not lead to a noticeable improvement, and caused the detection
confidence value to be too low to reliably threshold from misdetections.

Given its suitability for smartphone inference due to its low oper-
ation count, as well as its precision-increasing skip connections, a ver-
sion of the pose network using a MobileNetV2 feature extractor was con-
structed. While this decreased the forward pass times by about 35%, en-
suring proper misdetection thresholding in unseen data with this model is
an ongoing issue.

Our implementation allows to go beyond the original task of the track-
ing of handheld hair curler. In addition to the pose estimation network,
several off-the-shelf or custom models were tested with this plugin, in-
cluding a MobileNetV2-SSDLite bounding box detector, a PoseNet hu-
man pose estimator, and hair and face segmentation networks. The results
show that our implementation allows efficiency on mobile devices with a
potential to improve the results even further.

Acknowledgments

We would like to thank PlayFusion Limited for allowing use their code-
base and expertise to create an implementation of our method. We grate-
fully acknowledge the support of NVIDIA Corporation with the donation
of the Titan Xp GPU used for this research.

References

[1] Mark Everingham, Luc Van Gool, Christopher K.I. Williams, John
Winn, and Andrew Zisserman. The pascal visual object classes
(VOC) challenge. International Journal of Computer Vision, 88(2):
303–338, jun 2010.

[2] Joseph Redmon and Ali Farhadi. YOLO9000: Better, faster, stronger.
In Proceedings - 30th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, volume 2017-Janua, pages 6517–
6525, dec 2017.

[3] Bugra Tekin, Sudipta N. Sinha, and Pascal Fua. Real-Time Seam-
less Single Shot 6D Object Pose Prediction. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 292–301. IEEE, dec 2018.


