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Message from the Chairs
We are pleased to introduce the programme for the 18th 
ACM SIGGRAPH European Conference on Visual Media 
Production (CVMP). For almost two decades, CVMP has 
built a reputation as the prime venue for researchers to 
meet with practitioners in the Creative Industries, includ-
ing film, broadcast, games, immersive and beyond.

This year, we are cautiously returning to an in-person conference in London with an exciting 
programme that continues our signature mixture of keynotes, peer-reviewed papers, invited 
talks and special sessions, with speakers from across academia and industry. Our focus this year 
is on digital and virtual humans and the impact they have across the Creative Industries.

CVMP has firmly established itself as a leading venue for anyone interested in visual computing 
and its applications. This year, we are delighted to host an exciting array of keynote speakers 
from both academia and industry. Cengiz Öztireli (University of Cambridge) will focus on tech-
niques at the intersection of computer graphics, vision, and machine learning for capturing and 
replicating the visual world in 3D. Darren Cosker (Microsoft) will be taking us on a journey into 
the metaverse and discuss what will be necessary to create compelling immersive experiences 
in mixed reality. Siyu Tang (ETH Zurich) will present her research on learning to bring 3D scenes 
alive by plausibly populating them with realistic synthetic 3D humans. Tobias Ritschel (Univer-
sity College London) completes the line-up by taking a fresh look at image synthesis for future 
near-eye VR displays using a perceptually inspired approach.

CVMP has a traditionally strong technical papers programme but this year has seen an increase 
in the number of submitted papers and we are delighted to present seven full papers and nine 
short papers, from both academia and industry. Full papers were subject to double-blind peer 
review by our international programme committee, and short papers by a jury from our paper 
and programme chairs. Special care was taken to ensure peer-review was handled by non-con-
flicted reviewers. This makes for what we believe is a great papers line-up for oral and poster 
presentations at CVMP, and is a strong indicator of the quality of research in our area. We are 
also continuing with spotlight presentations for short papers, which proved to be very popular 
in previous years.

A small conference like CVMP in an expensive city like London would not be viable without the 
generous support of our sponsors. We sincerely thank our gold (YouTube, Autodesk, NVIDIA), 
silver (Adobe, Foundry, Vicon) and bronze sponsors (Activision, IO Industries, CAMERA, CVSSP) 
without whom this conference would not be possible. Finally, we would like to thank everyone 
who submitted their work to CVMP this year, the invited speakers, the reviewers and the organ-
ising committee for their hard work in putting together CVMP 2021!

Rafał Mantiuk and Christian Richardt (Conference Chairs) 
Marco Volino (Full Papers Chair) 
Armin Mustafa (Short Papers Chair) 
Duygu Ceylan and Ilke Demir (Industry Chairs) 
Bernhard Egger (Sponsorship Chair)
Peter Vangorp (Public Relations) 
Alex King (Conference Secretary)
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DAY 1 | Monday 6th December 2021
Location: The British Library, Knowledge Centre

09:00	 Registration	opens	with	Coffee	|	Knowledge Foyer

09:30 Chairs’	Welcome	|	Rafał	Mantiuk, University of Cambridge
   Christian Richardt, University of Bath

09:40 SESSION 1	|	Bring	on	the	colours!
 1. Semantic-driven colorization 
  Man M. Ho (Hosei University), Lu Zhang (INSA Rennes), 
  Alexander Raake (TU Ilmenau), Jinjia Zhou (Hosei University)
 2.	 Arnold	7	update (industry talk) 
  Frederic Servant (Autodesk)
 3.	 Photometric	stereo	with	area	lights	for	Lambertian	surfaces 
  Jiangbin Gan and Thorsten Thormählen (University of Marburg)
 4.	 Material	acquisition	and	editing	(industry talk) 
  Valentin Deschaintre (Adobe)

11:00 Break	with	Coffee	|	Knowledge Foyer

11:30 KEYNOTE 1 | Cengiz Öztireli, University of Cambridge

12:30 SPOTLIGHT SESSION

12:40 LUNCH, POSTER AND DEMO SESSION | Knowledge Foyer

14:30 INDUSTRY SPECIAL SESSION	|	Digital	humans
 5.	 Volumetric	video	at	the	intersection	of	visual	effects	and	virtual	production 
  Juraj Tomori, Charles Dupont, George Ash and Mike Pelton (dimension)
	 6.	 High-performance	multi-camera	systems	for	volumetric	capture	and	4D 
  face/body scanning
  Andrew Searle (IO Industries Inc)
 7.	 The	creation	of	3D	human	datasets	for	CV	research
  Lukas Lamprecht (Renderpeople)

15:30 POSTER AND DEMO SESSION | Knowledge Foyer with Coffee

16:00  KEYNOTE 2 |	Darren	Cosker, Microsoft

17:00 NETWORKING RECEPTION | Knowledge Foyer

18:30 Close    
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DAY 2 | Tuesday,	7th December 2021
Location: The British Library, Knowledge Centre

09:00	 Registration	opens	with	Coffee	|	Knowledge Foyer

09:30 SESSION 2	|	And	Action!
	 8.	 Automatic	camera	control	and	directing	with	an	ultra-high-definition 
  collaborative recording system 
  Bram Vanherle, Tim Vervoort, Nick Michiels and Philippe Bekaert (Hasselt University)
	 9.	 Contact-rich	simulation	in	NVIDIA	Omniverse (industry talk) 
  Kier Storey and Michelle Lu (NVIDIA)
	 10.	FacialFilmroll:	High-resolution	multi-shot	video	editing 
  Bharath Bhushan Damodaran, Emmanuel Jolly (InterDigital R&D), Gilles Puy (In his 
  own name), Philippe-Henri Gosselin, Cédric Thébault, Junghyun Ahn (InterDigital), 
  Tim Christensen, Paul Ghezzo (In his own name), Pierre Hellier (InterDigital)
	 11.	Foundry	and	machine	learning (industry talk) 
  Ben Kent (Foundry)

10:50 Break	with	Coffee	|	Knowledge Foyer

11:20 KEYNOTE 3 |	Siyu	Tang, ETH Zurich

12:20 LUNCH, POSTER AND DEMO SESSION | Knowledge Foyer

14:00 SESSION 3	|	Gimme	the	data!
	 12.	Depth	estimation	from	a	single	omnidirectional	image	using	domain	adaptation 
  Yihong Wu, Yuwen Heng, Mahesan Niranjan and Hansung Kim 
  (University of Southampton)
	 13.	VPN:	Video	provenance	network	for	robust	content	attribution 
  Alexander Black, Tu Bui (University of Surrey), Simon Jenni (Adobe Research), 
  Viswanathan (Vishy) Swaminathan (Adobe), John Collomosse (Adobe Research)
	 14.	High-fidelity	procedural	data	synthesis	for	validation	and	training	of	perception 
	 	 function (industry talk) 
  Oliver Grau and Korbinian Hagn (Intel)
	 15.	Speech-driven	conversational	agents	using	conditional	flow-VAEs 
  Sarah Taylor, Jonathan Windle, David Greenwood (University of East Anglia), 
  Iain Matthews (Carnegie Mellon University) 

15:20 POSTER AND DEMO SESSION | Knowledge Foyer with Coffee

15:50 KEYNOTE 4 | Tobias Ritschel, University College London

16:50	 Announcements	and	Prizes	|	Rafał	Mantiuk, University of Cambridge
   Christian Richardt, University of Bath

17:00 Close
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KEYNOTE 1 | Cengiz Öztireli
 University of Cambridge

3D Digital Reality – Modeling for Perception
Monday 6th December 2021, 11:30

Creating digital models of reality is one of the grand challenges of computer science. In 
this talk, I will summarize some of our efforts towards achieving this goal to allow ma-
chines to perceive the world as well as and beyond humans. The focus will be on cap-
turing and replicating the visual world and techniques at the intersection of computer 
graphics, vision, and machine learning to solve several fundamental problems and their 
practical applications.

Cengiz Öztireli

Cengiz Öztireli is an Associate Professor at the University 
of Cambridge and a Senior Researcher at Google. He pre-
viously worked as a Research Scientist at Disney Research, 
and as a Senior Research Associate at ETH Zürich. He ob-
tained his M.S. and Ph.D. degrees in computer science 
from ETH ( jointly funded by the Swiss National Science 
Foundation) and completed a double major in comput-
er and electronics engineering at Koç University (summa 
cum laude, valedictorian). He has been honored with sev-
eral awards including the Eurographics Best Ph.D. Thesis 
Award, Fulbright Science and Technology Award, and the 
UKRI Future Leaders Fellowship.
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KEYNOTE 2 |	Darren	Cosker
 Microsoft

Creating Presence in Mixed Reality and the Metaverse
Monday 6th December 2021, 16:00

Imagine being able to have a conversation with someone who is hundreds of miles 
away, but it feels like they are actually there. Technology which can achieve this would 
change society — bringing distant family and friends closer together, transforming the 
way we work and reducing carbon footprints. However, creating compelling interactive 
experiences involving other people in mixed reality and the metaverse is a challenging 
task combining expertise in computer vision, graphics, AI and engineering. In this talk, I 
will examine some of the technologies required to make this a reality and the challenges 
ahead.

Darren	Cosker

Darren Cosker is a Scientist at Microsoft’s Mixed Reality 
and AI laboratory (Cambridge), and holds a part-time 
full Professor position at the University of Bath. He was 
previously the founding Director of CAMERA (2015–2021) 
— a multi-disciplinary research centre based dedicated 
to understanding and modelling human motion and ap-
pearance. At Microsoft, Darren is helping realise the vision 
of ‘presence’ in mixed reality and the metaverse through 
products such as Microsoft Mesh. Prior to joining Micro-
soft, Darren held personal research fellowships from the 
Royal Society (2012–2016) and the Royal Academy of En-
gineering (2007–2012).
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KEYNOTE 3 |	Siyu	Tang
 ETH Zurich

Learning	to	capture	and	synthesise	3D	humans	in	3D	scene
Tuesday 7th December 2021, 11:20

In recent years, many high-quality datasets of 3D indoor scenes have emerged such as 
Replica and Gibson, which employ 3D scanning and reconstruction technologies to cre-
ate digital 3D environments. Also, virtual robotic agents exist inside of 3D environments 
such as the Habitat simulator. These are used to develop scene understanding methods 
from embodied views, thus providing platforms for indoor robot navigation, AR/VR and 
many other applications. Despite this progress, a significant limitation of these environ-
ments is that they do not contain people. The reason such worlds contain no people is 
that there are no fully automated tools to synthesise realistic people interacting with 3D 
scenes naturally, and manually doing this requires significant artist effort. In this talk, I 
will present our previous and ongoing research about capture and synthesis of realistic 
people interacting realistically with 3D scenes and objects.

Siyu	Tang

Siyu Tang is an assistant professor at ETH Zürich in the 
Department of Computer Science since January 2020. 
She received an early career research grant to start her 
own research group at the Max Planck Institute for Intelli-
gent Systems in November 2017. She was a postdoctoral 
researcher in the same institute, advised by Dr. Michael 
Black. She finished her PhD at the Max Planck Institute 
for Informatics and Saarland University in 2017, under the 
supervision of Professor Bernt Schiele. Before that, she re-
ceived her Master’s degree in Media Informatics at RWTH 
Aachen University, advised by Prof. Bastian Leibe and her 
Bachelor degree in Computer Science at Zhejiang University, China. She has received 
several awards for her research, including the Best Paper Award at BMVC 2012 and 3DV 
2020, Best Paper Award Candidates at CVPR 2021, an ELLIS PhD Award and a DAGM- 
MVTec Dissertation Award.
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KEYNOTE 4 | Tobias Ritschel
 University College London

Perceptually-inspired	VR	Image	Synthesis
Tuesday 7th December 2021, 15:50

Images shown on future near-eye displays will be perceived differently. In this talk I will 
argue that, hence, all image synthesis itself will need to change. I will mostly discuss 
means to reduce bandwidth and/or latency. This can be achieved by rendering images 
that are perceived like other images directly (Ventral Metamers), by changing how the 
deepest internals of graphics hardware work (Perceptual Rasterization) or by switching 
to a domain different from pixels (Laplacian).

Tobias Ritschel

Professor Tobias Ritschel has received his PhD from Saar-
land University (MPI) in 2009. He was a post-doctoral re-
searcher at Telecom ParisTech / CNRS 2009–10 and a Senior 
Researcher at MPI 2010–15. Tobias was appointed Senior 
Lecturer at University College London in 2015, where he 
was named Full Professor of Computer Graphics in 2019. 
His work has received the Eurographics Dissertation (2010) 
and Young Researcher Award (2014). His interests include 
Image Synthesis and Human Visual Perception, now fre-
quently including applied AI.
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INDUSTRY SPECIAL SESSION ON DIGITAL HUMANS

Volumetric	video	at	the	intersection	of	visual	effects	and	virtual 
production
Juraj Tomori, Charles Dupont, George Ash and Mike Pelton (dimension)

Juraj Tomori, software developer at dimension, has experience with 
volumetric video, facial performance capture and processing and deep 
domain knowledge of visual effects. Positioned at the intersection of 
research and development, he is eager to get the latest innovations 
into production.

High-performance	multi-camera	systems	for	volumetric	capture 
and 4D face/body scanning
Andrew Searle (IO Industries Inc)

IO Industries Inc. develops market-leading specialty video cameras, designed with the 
needs of VR/AR/XR content generators in mind.  Whether it’s a pair of cameras in a 3D 
stereoscopic rig, a handful of cameras for a 360° VR configuration, or an array of over 
100+ cameras set up for volumetric video capture, IO Industries cameras have the fea-
tures and flexibility it takes to make these configurations happen.

The	creation	of	3D	human	datasets	for	CV	research
Lukas Lamprecht (Renderpeople)

Huge datasets of scanned 3D humans are a necessity to solve many current persistent 
and human-related problems within the CV industry, e.g. when it comes to fields like 
pose estimation or human digitization. Supervised learning with synthetic ground truth 
human 3D data has been proven to be a highly effective approach to develop machine 
learning models, but it goes hand in hand with the issue that compared to 2D imagery 
it’s difficult to get large datasets of annotated hyper-realistic and accurate 3D scanned 
human data. Since 2013 Renderpeople is one of the world leaders in the production, de-
velopment, and distribution of scanned 3D People models as stock footage. In his talk, 
their CEO Lukas Lamprecht will share some insights about Renderpeople’s challenges 
as well as approaches and ideas about the further creation of human datasets for CV 
research.

Lukas Lamprecht is the CEO at Renderpeople, Germany since 2019. Before that he was a 
3D artist at Renderpeople from 2015 to 2019. He was a lecturer and supervisor for 3D & 
VFX at SAE Institute, Germany between 2013 and 2015. He obtained his Bachelor of Arts 
(Hons.) degree in Digital Film Making from Middlesex University, London, UK in 2015.

10



Volumetric video at the intersection of visual effects and virtual production

Juraj Tomori, Charles Dupont, George Ash, Mike Pelton
{juraj,charles,george,mike}@dimensionstudio.co

dimension,
London

1 Introduction

Dimension operates at the intersection of volumetric video production,
visual effects, and virtual production. Evolution in the media and enter-
tainment industries is fuelling a growing demand for the rapid creation of
realistic content, both for visual effects and for virtual production. Cre-
ating digital humans has long been an especially challenging task - an
active area of research since the inception of computer graphics. Dimen-
sion is meeting the need for the scalable production of realistic virtual
humans by bringing its extensive experience with volumetric video cap-
ture and virtual avatar creation to bear. In this talk we describe our ap-
proach to increasing the quality and editability of volumetric video assets,
overcoming some inherent limitations of the medium, and increasing its
applicability in the worlds of media and entertainment.

2 Volumetric video

Volumetric video, or “free viewpoint video”, is a scalable and realistic
way of capturing and representing human performances, and typically
acquired with multi-camera stages. Capture reconstruction results in a
lightweight, and believable, animated asset that can be viewed from an
arbitrary point of view within the navigation range. Volumetric video is
a broad term that includes multiple approaches to achieve the same goal
- having the ability to freely change the viewpoint from which the video
can be played back [5]. These approaches can be broadly divided into
three categories:

• Model-based approaches, for example virtualized reality [3]

• Image-based approaches, for example light-fields [4]

• Hybrid approaches, for example that of [6]

Each approach is making a viewpoint range, compression, visual fidelity,
cost, acquisition and reconstruction difficulty tradeoffs [5]. Recent re-
search includes [1]’s model-based approach which has been commercial-
ized and provides state-of-the-art results and [2]’s model-based approach
utilizing the light stage in addition to multi-camera stage, being able to
infer photometric normals and reflectance properties. Dimension is uti-
lizing [1]’s approach with our own advances described in the talk.

3 Avatars

The use of avatars is familiar ground, and the preferred approach for vi-
sual effects, virtual production, games, and the media and entertainment
industry in general. Producing an avatar typically involves multiple steps
and skills: designing the concept art, 3D sculpting, modelling, rigging,
shading, animation, and adding character effects, which together provide
very tight control over the final result, but are laborious and time consum-
ing to achieve.

4 Limitations

While volumetric video capture typically provides more realism than a
bottom-up avatar-based approach, editing the content is more challeng-
ing than that of an avatar-based approach. On the other hand, volumetric
video production typically replaces tedious work for many artists with ex-
tensive computation and reduced human input, making it a more scalable
approach. The time to produce a segment of volumetric video is typ-
ically an order of magnitude shorter than that for an avatar-based work-
flow. There are of course challenges with volumetric video reconstruction
- amongst them:

1. A lack of physically based textures, which [1] doesn’t infer, but
are required for seamless integration into the virtual environment,

2. A lack of motion vectors, which are needed for the deformation
motion blur that features in a typical visual effects workflow,

3. The need for animation edits that fit with established animation
pipelines,

4. The need for extreme visual fidelity in close-up effects shots,

5. Reconstruction difficulties arising from fast-moving or thin, trans-
parent, translucent objects, and

6. The need for artist-friendly control over the materials and textures.

5 Results

In this talk we describe the steps we are taking towards addressing these
challenges, and the benefits for visual effects and virtual production projects.
Our progress is enabling new applications for volumetric video, includ-
ing the delivery of high quality assets for digital doubles in visual effects
close-ups, and lighter assets for animatable CG characters in medium and
long shots, and in virtual production scenarios.

[1] Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Dennis
Evseev, David Calabrese, Hugues Hoppe, Adam Kirk, and Steve Sul-
livan. High-quality streamable free-viewpoint video. ACM Trans.
Graph., 34(4), July 2015. ISSN 0730-0301. doi: 10.1145/2766945.
URL https://doi.org/10.1145/2766945.

[2] Kaiwen Guo, Peter Lincoln, Philip Davidson, Jay Busch, Xueming
Yu, Matt Whalen, Geoff Harvey, Sergio Orts-Escolano, Rohit Pandey,
Jason Dourgarian, Danhang Tang, Anastasia Tkach, Adarsh Kow-
dle, Emily Cooper, Mingsong Dou, Sean Fanello, Graham Fyffe,
Christoph Rhemann, Jonathan Taylor, Paul Debevec, and Shahram
Izadi. The relightables: Volumetric performance capture of hu-
mans with realistic relighting. ACM Trans. Graph., 38(6), Novem-
ber 2019. ISSN 0730-0301. doi: 10.1145/3355089.3356571. URL
https://doi.org/10.1145/3355089.3356571.

[3] T. Kanade, P. Rander, and P.J. Narayanan. Virtualized reality: con-
structing virtual worlds from real scenes. IEEE MultiMedia, 4(1):
34–47, 1997. doi: 10.1109/93.580394.

[4] Marc Levoy and Pat Hanrahan. Light field rendering. In Proceedings
of the 23rd Annual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH ’96, page 31–42, New York, NY, USA,
1996. Association for Computing Machinery. ISBN 0897917464.
doi: 10.1145/237170.237199. URL https://doi.org/10.
1145/237170.237199.

[5] Aljoscha Smolic. 3d video and free viewpoint video—from cap-
ture to display. Pattern Recognition, 44(9):1958–1968, 2011.
ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2010.09.
005. URL https://www.sciencedirect.com/science/
article/pii/S0031320310004450. Computer Analysis of
Images and Patterns.

[6] C. Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele, Si-
mon Winder, and Richard Szeliski. High-quality video view in-
terpolation using a layered representation. In ACM SIGGRAPH
2004 Papers, SIGGRAPH ’04, page 600–608, New York, NY, USA,
2004. Association for Computing Machinery. ISBN 9781450378239.
doi: 10.1145/1186562.1015766. URL https://doi.org/10.
1145/1186562.1015766.

11



INDUSTRY TALKS 

Arnold	7	update
Frederic Servant (Autodesk)

Deliver beautiful results faster with amplified rendering performance, interactivity, and 
reliability! In the latest Arnold release, performance is significantly upgraded, scalability 
on GPU is greatly improved, and fullframe imagers are now updated during rendering. 
Intel’s Open Image Denoise, a fast, AI accelerated, high-quality denoiser is now integrat-
ed. This release also adds production-ready USD enhancements for specific procedurals 
and shapes in Hydra, deep AOVs, light linking, and more.

Material	acquisition	and	editing
Valentin Deschaintre (Adobe Research)

Materials are an essential part of virtual environments. Such environments are now ubiq-
uitous across industries, from entertainment to architecture and medicine. Yet, the cre-
ation of virtual materials remains challenging and requires multiple hours for trained 
artists. In this talk I discuss our recent work on making material acquisition, creation 
and editing more accessible and what I believe to be next interesting steps in this direc-
tion. The work discussed in this talk will include: few images material capture, material 
re-sampling and procedural representations.

Valentin is a Research Scientist at Adobe Research in the London 
lab, working on virtual material creation and editing. He previous-
ly worked in the Realistic Graphics and Imaging group of Imperi-
al College London hosted by Abhijeet Ghosh. He obtained his PhD 
from Inria, in the GraphDeco research group, under the supervision 
of Adrien Bousseau and George Drettakis. During his PhD, he spent 
2 months under the supervision of Frédo Durand, at MIT CSAIL. 
His research covers material and shape (appearance) acquisition, creation, editing and 
representation, leveraging deep learning methods.
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Contact-rich	simulation	in	NVIDIA	Omniverse
Kier Storey and Michelle Lu (NVIDIA)

Kier is a distinguished engineer and architect on the PhysX team with over 15 years of 
experience writing high-performance physics simulations. After completing his Ph.D. in 
computer science, Kier worked as a physics programmer on a number of AAA games 
before joining the NVIDIA PhysX team. During his time at NVIDIA, he has worked on a 
wide range of simulations including rigid bodies, robotics, soft bodies, clothing, fluid, and 
particles using both high-performance multi-core CPUs and GPUs that have been used in 
a wide range of gaming and simulation platforms.

Michelle Lu is Director of Simulation Technology in the PhysX team. 
She has been working on physics simulation for over 15 years, includ-
ing rigid body dynamics, robotics simulation, deformable simulation, 
clothing, and fluid dynamics.

Foundry	and	Machine	Learning
Ben Kent (Foundry)

Foundry’s Nuke is often seen as ubiquitous in the VFX industry. Part of that involves 
staying up-to-date and providing artists with the latest tech. Nuke 13.0 was the first im-
plementation of machine learning—a goal that Foundry’s A.I. Research team was created 
for. Ben Kent, Research Engineering Manager and A.I. Team Lead, will walk through the 
founding pillars of A.I. at Foundry, from where it started to where it is now. The session 
will cover the extensive work from the Foundry Research team, how machine learning 
tool CopyCat was developed and implemented in Nuke 13, and what the future holds for 
Foundry and AI.

Ben is the Research Engineering Manager at Foundry as well as a 
screenwriter/director. Ben won an Academy Sci-Tech Award for his 
work on Foundry’s Furnace tools and now leads the A.I. research team. 
As a filmmaker, his feature debut, comedy horror Killer Weekend was 
released around the world in 2019.
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FULL PAPERS | Abstracts

Semantic-driven colorization
Man M. Ho (Hosei University), Lu Zhang (INSA Rennes), Alexander Raake (TU Ilmenau), 
Jinjia Zhou (Hosei University)

Recent colorization works implicitly predict the semantic information while learning to 
colorize black-and-white images. Consequently, the generated color is easier to be over-
flowed, and the semantic faults are invisible. According to human experience in coloriza-
tion, our brains first detect and recognize the objects in the photo, then imagine their 
plausible colors based on many similar objects we have seen in real life, and finally colorize 
them, as described in Figure 1. In this study, we simulate that human-like action to let our 
network first learn to understand the photo, then colorize it. Thus, our work can provide 
plausible colors at a semantic level. Plus, the semantic information predicted from a well-
trained model becomes understandable and able to be modified. Additionally, we also 
prove that Instance Normalization is also a missing ingredient for image colorization, then 
re-design the inference flow of U-Net to have two streams of data, providing an appropri-
ate way of normalizing the features extracted from the black-and-white image. As a result, 
our network can provide plausible colors competitive to the typical colorization works for 
specific objects. Our interactive application is available at https://github.com/minhmanho/
semantic-driven_colorization.

Automatic	camera	control	and	directing	with	an	ultra-high-definition 
collaborative recording system
Bram Vanherle, Tim Vervoort, Nick Michiels, Philippe Bekaert (Hasselt University)

Capturing an event from multiple camera angles can give a viewer the most complete 
and interesting picture of that event. To be suitable for broadcasting, a human director 
needs to decide what to show at each point in time. This can become cumbersome with 
an increasing number of camera angles. The introduction of omnidirectional or wide-an-
gle cameras has allowed for events to be captured more completely, making it even more 
difficult for the director to pick a good shot. In this paper, a system is presented that, 
given multiple ultra-high resolution video streams of an event, can generate a visually 
pleasing sequence of shots that manages to follow the relevant action of an event. Due 
to the algorithm being general purpose, it can be applied to most scenarios that feature 
humans. The proposed method allows for online processing when real-time broadcasting 
is required, as well as offline processing when the quality of the camera operation is the 
priority. Object detection is used to detect humans and other objects of interest in the 
input streams. Detected persons of interest, along with a set of rules based on cinematic 
conventions, are used to determine which video stream to show and what part of that 
stream is virtually framed. The user can provide a number of settings that determine how 
these rules are interpreted. The system is able to handle input from different wide-angle 
video streams by removing lens distortions. Using a user study it is shown, for a number 
of different scenarios, that the proposed automated director is able to capture an event 
with aesthetically pleasing video compositions and human-like shot switching behavior.
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Depth	estimation	from	a	single	omnidirectional	image	using	domain	
adaptation
Yihong Wu, Yuwen Heng, Mahesan Niranjan, Hansung Kim (University of Southampton)

Omnidirectional cameras are becoming popular in various applications owing to their 
ability to capture the full surrounding scene in real-time. However, depth estimation for 
an omnidirectional scene is more difficult than normal perspective images due to its 
different system properties and distortions. It is hard to use normal depth estimation 
methods such as stereo matching or RGB-D sensing. A deep-learning-based single-shot 
depth estimation approach can be a good solution, but it requires a large labelled data-
set for training. The 3D60 dataset, the largest omnidirectional dataset with depth la-
bels, is not applicable for general scene depth estimation because it covers very limited 
scenes. In order to overcome this limitation, we propose a depth estimation architecture 
for a single omnidirectional image using domain adaptation. The proposed architecture 
gets labelled source domain and unlabelled target domain data together as its input 
and estimated depth information of the target domain using the Generative Adversarial 
Networks (GAN) based method. The proposed architecture shows >10% higher accura-
cy in depth estimation than traditional encoder-decoder models with a limited labelled 
dataset. 

VPN:	Video	provenance	network	for	robust	content	attribution
Alexander Black, Tu Bui (University of Surrey), Simon Jenni (Adobe Research), 
Viswanathan (Vishy) Swaminathan (Adobe), John Collomosse (Adobe Research)

We present VPN – a content attribution method for recovering provenance information 
from videos shared online. Platforms, and users, often transform video into different 
quality, codecs, sizes, shapes, etc. or slightly edit its content such as adding text or emoji, 
as they are redistributed online. We learn a robust search embedding for matching such 
video, invariant to these transformations, using full-length or truncated video queries. 
Once matched against a trusted database of video clips, associated information on the 
provenance of the clip is presented to the user. We use an inverted index to match tem-
poral chunks of video using late-fusion to combine both visual and audio features. In 
both cases, features are extracted via a deep neural network trained using contrastive 
learning on a dataset of original and augmented video clips. We demonstrate high ac-
curacy recall over a corpus of 100,000 videos.

FacialFilmroll:	High-resolution	multi-shot	video	editing
Bharath Bhushan Damodaran, Emmanuel Jolly (InterDigital R&D France), Gilles Puy (In 
his own name), Philippe-Henri Gosselin, Cédric Thébault, Junghyun Ahn (InterDigital), Tim 
Christensen, Paul Ghezzo (In his own name), Pierre Hellier (InterDigital/Technicolor) 

We present FacialFilmroll, a solution for spatially and temporally consistent editing of 
faces in one or multiple shots. We build upon unwrap mosaic [Rav-Acha et al. 2008] by 
specializing it to faces. We leverage recent techniques to fit a 3D face model on monoc-
ular videos to (i) improve the quality of the mosaic for edition and (ii) permit the auto-
matic transfer of edits from one shot to other shots of the same actor. We explain how 
FacialFilmroll is integrated in post-production facility. Finally, we present video editing 
results using FacialFilmroll on high resolution videos.
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Speech-driven	conversational	agents	using	conditional	flow-VAEs
Sarah Taylor, Jonathan Windle, David Greenwood (University of East Anglia), 
Iain Matthews (Carnegie Mellon University)

Automatic control of conversational agents has applications from animation, through 
human-computer interaction, to robotics. In interactive communication, an agent must 
move to express its own discourse, and also react naturally to incoming speech. In this 
paper we propose a Flow Variational Autoencoder (Flow-VAE) deep learning architecture 
for transforming conversational speech to body gesture, during both speaking and lis-
tening. The model uses a normalising flow to perform variational inference in an autoen-
coder framework and is a more expressive distribution than the Gaussian approximation 
of conventional variational autoencoders. Our model is non-deterministic, so can pro-
duce variations of plausible gestures for the same speech. Our evaluation demonstrates 
that our approach produces expressive body motion that is close to the ground truth 
using a fraction of the trainable parameters compared with previous state of the art. 

Photometric	stereo	with	area	lights	for	Lambertian	surfaces
Jiangbin Gan and Thorsten Thormählen (University of Marburg)

This paper presents a photometric stereo technique that uses area lights for normal re-
covery and 3D geometry reconstruction of mid-sized objects. The object is illuminated 
in succession by several off-the-shelf LED area lights and images are captured by at least 
two DSLR cameras. Compared to point light sources, area lights have the advantage of 
producing high illuminance, resulting in low image noise and fast shutter speed, which 
is important if the captured object is not completely static during the acquisition of the 
images, e.g., when capturing a human face. Area lights are standard photo equipment 
which makes them cheaper, easier to obtain, and install than specialized many-lights 
hardware. The normal map of the object is recovered by our photometric stereo ap-
proach that uses ray tracing techniques to simulate the light transport in the scene. Fur-
thermore, our approach takes the effects of occlusion and interreflections into account. 
The normal map is iteratively optimized which in turn is utilized to update the depth 
information of the object. Our synthetic and real-world experiments show that area lights 
are applicable for photometric stereo at the cost of an increased computational effort. 

Full	papers	available	from	the	ACM	Digital	Library
https://dl.acm.org/doi/proceedings/10.1145/3485441
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SHORT PAPERS
One-shot SVBRDF Estimation Including Anisotropic material

Nozomu Terada, Ikuko Shimizu Department of Computer and Information Sciences,
Tokyo University of Agriculture and Technology

Figure 1: Rendering results using our network output for synthetic data
and real data

For rendering 3D object realistically in CG, Spatially Varying Bidirec-
tional Reflectance Distribution Function (SVBRDF) is essential. There-
fore, SVBRDF estimation methods have been studied for many years. In
recent years, various methods for estimating SVBRDF employing deep
learning have been proposed[2, 3, 6].

Methods based on deep learning require huge dataset. Though there
are many SVBRDF datasets, they are limited to support only relatively
simple isotropic materials. However, the optical phenomenon of anisotropy,
where highlights are elongated as shown in Fig.1, is particularly common
in metals. This is because industrial products are often processed in an
artistic way to exhibit anisotropy. However, existing methods ignore the
anisotropic property. To deal with the metal objects in CG, an easy and
more unconstrained SVBRDF data estimation method is required.

This paper proposes a method for estimating SVBRDF including ani-
sotropy from one image based on deep learning. Our contributions are
as follows: (1) new network structure for estimating SVBRDF with four
important characteristics, (2) the loss function for training our network
by combination of three loss functions, and (3) a new SVBRDF dataset
including anisotoripic materials for training.

The network structure of our method is shown in the Fig. 2. Basi-
cally, there are 4-layers encoder / decoder and skip connections. Our four
important characteristics are ResPath for skip connection, Global Feature
subnetwork, Bottom Block, and Partial Convolution.

For the skip connection, we use ResPath [5]. This is because ResPath
is known to have effect of suppressing the gap between the encoder and
the decoder.

The node “GL” in Fig. 2 is a Global Feature subnetwork proposed
by Deschaintre et al. [2], which showed good performance in isotropic
SVBRDF estimation. This global feature network is known to have the
effect of improving the ability to integrate information from distant loca-
tions in an image, which improves the ability to assign similar values to
similar materials in the image. By introducing the global feature network,
the properties of uniform regions become more uniform.

The structure of the bottom block of our network, marked with “BO”
in Fig. 2, is inspired by the method called Atrous Spatial Pyramid Pooling
(ASPP) proposed in [1]. Because a wider field of view by downsampling
makes the low-level features too abstract compared to the original input
image, we use the Atrous convolution to get a wider field of view instead
of downsampling.

In the SVBRDF estimation task, artifacts are known to occur when
the input image have the strong and distinct highlights such as saturation.
In the image of anisotropic materials, the strong and distinct highlights
are often observed, and moreover, saturation tends to occur over a wider
range than the image of standard materials. To overcome this problem,
we utilize the convolution in the network with Partial Convolution [7]. In
the Partial Convolution, the saturated regions are not convoluted by using
a mask for the saturated regions of the input image.

Next, we explain about the loss function for training our network.
We introduce a combination of three loss functions. The first one is the
rendering loss function, which compares rendered image by estimated
SVBRDF data to rendered image by the target SVBRDF data, which is

Figure 2: Network Structure

common in SVBRDF estimation tasks. The second one is a loss func-
tion that compares the rendered image by estimated SVBRDF data whose
anisotropy data is replaced by the target anisotropy data to rendered image
by target SVBRDF data. Because it is difficult to estimate the anisotropic
direction, this loss function facilitates the estimation. The third one uses
the Perceptual loss proposed in [4]. This loss function makes it easier for
the network to understand the global structure.

In addition, we estimate the height map instead of the normal map.
This is because the normal map can be calculated using the height map
and the height map estimation is easier than the normal map estimation.

Before training the network, we first created a dataset for training be-
cause there is no other SVBRDF datasets including anisotoripic materials.
Our dataset is composed of data based on the Disney Principled SVBRDF
model, which has intuitive parameters and is compatible with various soft-
ware. For isotropic materials, data in Substance Share 1 were edited and
used in our dataset. For anisotropic materials, we newly created data.

The results obtained by our method for the synthetic data and real
data are shown in Fig. 1. For the synthetic date, although some of the
results are unstable, we confirmed that we can estimate the SVBRDF data
even when we input complex anisotropic data such as dirt, noise, and
separations. Note that the highlights of the input image were removed
fairly cleanly and the results are very similar to the ground truth data. For
the real data, it is not possible to estimate properly under all conditions.
However, we confirmed that satisfactory data was obtained from various
inputs.

[1] L. C. Chen, G. Papandreou., I. Kokkinos., K. Murphy., A. L. Yuille.
DeepLab: Semantic Image Segmentation with Deep Convolutional
Nets, Atrous Convolution, and Fully Connected CRF. IEEE Trans.
on Pattern Analysis and Machine Intelligence PP(99). June 2016.

[2] V. Deschaintre.., M. Aittala.., F. Durand.., G. Drettakis., and A.
Bousseau. Single-Image SVBRDF Capture with a Rendering-Aware
Deep Network. ACM Trans. Graph. Vol. 37, No. 4, Article 128, Au-
gust 2018.

[3] D. Gao., X. Li., Y. Dong., P. Peers., K. Xu., and X. Tong. Deep in-
verse rendering for high-resolution SVBRDF estimation from an ar-
bitrary number of images. ACM Trans. on Graph. Vol. 38, Issue 4,
Article134. July 2019.

[4] L. A. Gatys., A. S. Ecker., M. Bethge. A neural algorithm of artistic
style. cs.CV, Sep 2015.

[5] N. Ibtehaz. and M. S. Rahman. MultiResUNet : Rethinking the U-Net
Architecture for Multimodal Biomedical Image Segmentation. cs.CV,
Feb 2019.

[6] Z. Li., K. Sunkavalli.., and M. Chandraker. Materials for Masses:
SVBRDF Acquisition with a Single Mobile Phone Image. cs.CV, Apr
2018.

[7] G. Liu., F. A. Reda., K. J. Shih., T. C. Wang., A. Tao., B. Catan-
zaro. Image Inpainting for Irregular Holes Using Partial Convolu-
tions. ECCV 2018, pp 89–105.

1https://share.substance3d.com/
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We propose a novel GAN architecture called AURealnessGAN that can
generates facial images corresponding to desired facial expressions by
specifying the intensity in the form of basic facial actions (Action Units:
AU) defined in the Facial Action Coding System (FACS)[1]. From the
psychological point of view, FACS AU can be used to formally represent
emotions and to manipulate the facial images corresponding to desired
emotions. Our basic idea is to construct a GAN architecture that generates
facial images corresponding to a specified emotion represented by FACS
AU values, by introducing the values to a generator part of GAN, i.e.,
multiple layers of deconvolutional networks. In FACS, 44 basic AUs are
defined such as Cheek Raiser (AU6), Lip Corner Puller (AU12), and so
on.

The structure of AURealnessGAN is shown in Fig.1. It allows the in-
put of AU intensity in addition to latent variables. This network separates
the layer for learning individual features from the one of AU. In addition,
the structure allows manipulation of AU intensity from a low-resolution
image state by mixing the layer for learning features related to AU and
one of individual features during deconvolution process.

Figure 1: Generator of AURealnessGAN

We use RealnessGAN[4] as the base model. The Generator of AURe-
alnessGAN is shown in Fig.1. The discriminator is a modified version of
RealnessGAN that allows input of AU intensities in addition to images.
For the learning, facial expressions with metadata for each AU intensity
is required. Because it is difficult to create data by annotating AU inten-
sity on face images with qualification, we utilize OpenFace[2], a network
that can measure 17 AU intensities, to create a new dataset in which each
AU intensity is annotated as metadata on the image. Some images in the
dataset are hidden by hair or hands. It is impossible to measure the AU
of that hidden part. The images with AU value that cannot be measured
by OpenFace are annotated with −1 to indicate that it cannot be mea-
sured. If AU can be measured, AU intensity is normalized from 0 to 1 and
annotated to the image to create a dataset.

We used CelebA[3], which is a public dataset for the image dataset.
Some of the CelebA images do not measure all of the 17 AUs. After
removing such images, we obtained 193,718 images of CelebA in which
one of the AUs can be measured by OpenFace.

The generated images by AURealnessGAN are shown in Fig.2. We
measured the AUs from these original images and input the AUs to the
AURealnessGAN to generate face images with the same expressions as
the original images. Compared to the case of neutral, the generated im-
ages has a change in facial expression of the original image while retain-
ing the identity other than facial expression. In the generated images of
sadness, black noise appears on the forehead in all images. This is proba-
bly due to the bias in the number of expressions in the dataset.

The dataset CelebA is designed for training of facial attribute recogni-
tion, face recognition, and face detection. Each expression is not equally
included in the dataset. The intensity of AU6 (Cheek Raiser), which tends
to be stronger when smiling, was measured from 102,446 images out of
193,718 datasets. The intensity was almost evenly distributed from weak
to strong. On the other hand, AU4 (Brow Lowerer), whose intensity tends
to be strong when the subject is sad, could be measured from only 58,652
images. In addition, most of the images were weak in intensity. This in-
dicates that a lack of data on the face images with sad expressions may
have resulted in not enough learning and noise in the generated images.

We proposed an AURealnessGAN that can manipulate the Action
Unit. To solve the noise problem, different data set and/or improvement
of base model is necessary.

Figure 2: Example of generated images(Left: Original image (from top
to bottom: neutral, happiness, surprised, angry, sadness), The 2nd to 4th
from left: generated images based on AU of original image)

[1] Paul Ekman, Wallace V. Friesen, O’Sullivan Maureen, Chan An-
thony, Diacoyanni-Tarlatzis Irene, Heider Karl, Krause Rainer,
LeCompte William Ayhan, Pitcairn Tom, Ricci-Bitti Pio E, Scherer
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tural differences in the judgments of facial expressions of emotion”.
Journal of Personality and Social Psychology, 1987.

[2] OpenFace 2.0: Facial Behavior Analysis Toolkit, Tadas Baltrušaitis,
Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency, IEEE
International Conference on Automatic Face and Gesture Recogni-
tion, 2018.

[3] Deep Learning Face Attributes in the Wild, Liu, Ziwei and Luo,
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[4] Real or Not Real, that is the Question, Xiangli, Yuanbo and Deng,
Yubin and Dai, Bo and Loy, Chen Change and Lin, Dahua, Interna-
tional Conference on Learning Representations, 2020.

[5] Development and validation of a facial expression database based
on the dimensional and categorical model of emotions, Fujimura
Tomomi. and Umemura Hiroyuki, Cognition and Emotion, 2018.

19



Learning semantic object segmentation for video post-production

Flavien Jourdren, Emmanuel Jolly, Claire-Hélène Demarty,
Frédéric Lefebvre, Pierre Hellier
firstname.lastname@InterDigital.com

InterDigital R&I, Rennes, France

1 Introduction

Video postproduction pipeline will increasingly benefit from artificial in-
telligence tools. For instance, the automatic extraction of specific objects
helps the postproduction workflow. In particular, booms mics removal
could be accelerated, and color chart detection could end up in a more
efficient color pipeline. For now, the segmentation of these objects is
usually done via rotoscoping and consequently necessitates huge manual
work. Semantic segmentation has made huge progress since the use of
convolutional networks. Existing and publicly available frameworks such
as Detectron2 1 and PointRend [1] already allow to perform high qual-
ity detection and segmentation of 80 different generic classes. However,
the performance of these frameworks is very much bound to the quan-
tity and quality of training data. Unfortunately, fetching relevant video
footage and manually extracting the objects (e.g., boom mics and color
charts) is out of reach. To alleviate this problem, we propose in this paper
a lightweight training strategy: training data is generated synthetically by
inserting in an existing dataset the desired objects, along with data aug-
mentation. A pretrained network is used and fine-tuned using this new
dataset. Despite its simplicity, we show in this paper that the system
can achieve good performances for an automatic video postproduction
pipeline.

2 Method

Generation of specific training data PointRend was trained on the
COCO dataset (https://cocodataset.org/#home), which con-
tains 80 generic object categories. We propose to extend the COCO
dataset with two new post production classes: boom mics and color charts.
A very small set of manually segmented images of boom mics (24 in-
stances) and color charts (450 instances) were used, thus requiring an
acceptable level of manual work. We first create synthetic insertions of
these objects in already annotated images from the COCO dataset. To re-
duce color and illumination discrepancy between inserted objects and the
background images, the insertion is performed with the OpenCV seam-
less blending technique (https://opencv.org/). In case of over-
lapping between COCO annotated objects and the new classes, the new
objects are placed in the foreground while the corresponding masks of
the occluded COCO objects are modified accordingly. From 24 boom
mics samples, 60% (14) were used for training, and 20% were used for
validation and test respectively. In total, 1500 (respectively 400) images
were generated for training (resp. validation). Each dataset was equally
split into positive (containing the object) and negative (without the ob-
ject) samples. For the first half of our data, some post production ob-
jects are randomly picked from example sets (with some horizontal or
vertical flip), then inserted at a random location in a background image
containing a person to guarantee a semantically consistent context. For
the second half, we just pick random background images that we do not
modify to have some negative examples (images without synthetic inser-
tions). In a second step, data augmentation was used as implemented in
Detectron2: ResizeShortestEdge, horizontal RandomFlip (prob: 20%),
vertical RandomFlip (prob: 20%), RandomBrightness (prob: 20%, range:
0.75-1.25), RandomContrast (prob: 20%, range: 0.75-1.25), RandomSat-
uration (prob: 20%, range: 0.75-1.25) and RandomRotation (prob: 20%,
range: -30-+30). Data augmentation increases the diversity of the final
dataset and helps the generalisation of the model.

Network architecture and training We use transfer learning to learn
our post production related classes by retraining only the model’s pre-
diction components (region proposal network and ROI heads). Transfer
learning exploits the low-level extraction of features already computed on
a large class of natural objects. Hence, the detection of new objects can be

1https://github.com/facebookresearch/detectron2

Figure 1: Segmentation results with our trained models. Top row: automatic
detection of boom mics, where the garbage mate can be used for removal. Bot-
tom row: automatic detection of color charts. An automatic color neutraliza-
tion/homogenization/transfer tool could benefit from the detected chart.

done with a limited number of training data. Transfer learning enables to
both benefit from the good generalization of the already trained lower lay-
ers and to reduce the processing time by learning only the last parameters
of the network. While common object segmentation methods generally
predict labels on low-resolution crops (e.g., 28x28), PointRend extracts
objects from 224x224 images, which is highly desirable for professional
contents with resolutions 4K or higher. Hence, PointRend was selected
as our base framework. The network backbone remains frozen, while the
predicting parts are initialized with the original weights from PointRend
Detectron2 and further retrained to take into account our new classes, i.e.,
boom mics and color charts. Both Resnet50 and Resnet101 were tested
as network backbone. We trained for 3500 iterations with a batch size of
5. Training lasted one hour in average for the two added classes using one
tesla 100 GPU, thus demonstrating that the process can be easily repeated
for additional classes.

3 Results
We present in figure 1 visual results of detection obtained on real images
not used during training. Although the detection contours do not exactly
match the geometric contours of the objects, we believe this paves the
way for an automatic usage in production. We also computed the aver-
age precision (AP) on the test set. For the ResNet50 (resp. ResNet101)
backbone, the average precision was 12.95 (resp. 16.35) for boom mics
and 94.43 (resp. 93.99) for color charts. The AP values for boom mics
are due to the inaccurate nature of the objects’ contour. In addition, our
network tends to fail detecting the whole handle of boom mics, leading
to unwanted holes and certainly contributing to the low AP values. How-
ever, if used for removal with a dilatation of the obtained mask, we believe
this average precision is acceptable for post-production routine. The pre-
cision obtained for color charts is better, which can be explained by the
lower visual variability of the object. In conclusion, we have presented a
framework to automatically extract specific post-production classes such
as boom mics and color charts, while resorting to very low manual re-
sources. Leveraging the transfer learning concept, we show that the syn-
thetic generation of data leads to a production usable detection. Further
work will focus on improving the plausibility of the data generation pro-
cess by adding additional constraints (for example, constraining the boom
mic position according to other objects in the scene).

4 References

[1] A. Kirillov et al. PointRend: Image segmentation as rendering.
CVPR, 2020.
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Switching camera views while broadcasting ice hockey has a significant
impact on the viewer’s quality of experience. In professional coverage,
this process involves expensive specialized equipment and highly skilled
individuals such as camera operators and a director responsible for su-
pervising and deciding the overall operation. Unfortunately, such an ex-
pense is prohibitive when it comes to broadcasting amateur community
or school sports. In this case, despite the fact that more than one camera
may be used, real-time coverage involves only a main view, without of-
fering the option of watching another view that may better cover crucial
moments during the game.

As a result, this monotonous coverage of regional games may poten-
tially hinder the viewership and thus be detrimental in the progress of
school and amateur sports. Thus, there is a need for a cost-effective, fully
automated camera view switching system, which analyzes the importance
of the scene covered by each camera and then switches the view in a man-
ner that is pleasant to the viewer.

To this end, in this paper, we propose a solution that is based on
deep learning, namely the Faster-RCNN architecture [6], to optimize view
switching in regional ice hockey games. The main reason for this choice
is that Faster-RCNN is proven to be more accurate and much faster com-
pared to its predecessors [3, 4, 5], making it an ideal approach for real-
time object detection of the ice hockey fields [6]. Our deep learning-
based object recognition network receives video feeds from the two pri-
mary camera views of ice hockey that include the side view that shows
the arena (please see left image in figure 1) and gives a wide view of the
field, and the goalie views (please see right image in figure 1) that show a
closer view of the nets. Then, it detects the players, net, and the puck in
real time with very good precision and based on the predicted confidence
values for the different objects, our algorithm decides which camera view
should be broadcasted. As a result, the proposed method is play-centered
unlike the only other existing work that is player centered [7].

In order to train our Faster-RCNN model, we generate a comprehen-
sive dataset for our application by downloading several hockey videos of
the resolution of 1920 x 1080 from YouTube [2]. From those videos, 1000
representative frames were selected for the training-validation phase, skip-
ping redundant frames and considering only frames with significantly dif-
ferent content to avoid overfitting, preferably including the puck and of
high visual quality – avoided blurry, fast moving puck frames. The se-
lected frames were labeled according to our objects of interest (the play-
ers, net, and the puck), while the referees and audience were excluded.
The training-validation frames were utilized to train our Faster-RCNN
using a state-of-the-art advanced research computing network [1] and
achieved the mean average precision of 78.9% for the validation images.

Figure 1: Our proposed scheme for automatic camera view switching.

Figure 2: Example frame from the test set that shows players and the
puck, which were detected correclty by our model.

In order to evaluate the performance of our trained model, we exam-
ined it on the test videos with unseen frames. We used our deep learning
model to detect the objects of interest. Figure 2 shows the predicted ob-
jects and the probability values assigned to the bounding boxes for anl
example test image. Our camera switching algorithm considers the posi-
tion and confidence level of detection of all the objects, as each one has
different roles to play in determining the best camera view for the current
moment of the game. It is important to note that designing our algorithm
to be biased towards the importance of objects to the fans, will allow our
solution to be focused on the action. Driven by professional game cover-
age, we assume that the most important object/event in hockey broadcast-
ing involves the puck. Following the above observation and the outcome
of many trials asking subjects to validate the validity of our switching
scheme, we assigned a weight to the confidence values predicted for each
object type according to its importance. More precisely, the confidence
of each detected object in the current camera view is weighted according
to its object type and the weighted values are summed up to calculate the
score for the current camera view. Our results show an accuracy of 75%
for our camera switching method in real-time. Considering the fact that
only 1000 frames were used for the training and validation phases, our
camera switching approach achieved a great performance.
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Generating 3D content is a task mostly done by hand. It requires spe-
cific knowledge not only on how to use the tools for the task, but also on
the fundamentals of a 3D environment. Recent works such as [3] and [2]
explore the idea of using natural language as input to a network that gen-
erates 3D shapes. However, their usage is not intuitive for new content
developers and the content generated is directly related to the data used
for training. In this work, we show that automatic generation of content
can be achieved, from a scene script, by leveraging existing tools, so that
non experts can easily engage in 3D content generation without requiring
vast amounts of time in exploring and learning how to use specific tools.

In this article we explore the possibilities of easing the process of
generating 3D content for non experts. To this end, we propose an archi-
tecture designed to provide a flexible automatic generation of 3D content
based on a textual summary of a scene. Our main goal is to explore ex-
isting technologies and leverage them, showing that the task of manually
creating and refining 3D content can be relieved by automating part of
the creation process. The current proposal has two main targets: (1) entry
level content creators, so that the creation of 3D virtual worlds that can
be modified and used for further refinement are readily available without
spending vast amounts of time; (2) augment the flexibility and automation
of scene synthesis, particularly in scenarios where detail is not a main re-
quirement. In our proposal we use the concept of a scene script, which is
a file where the objects, lights, materials and so on are detailed. This way,
by simply changing the file, variations of the scene can be generated. A
high level description of the proposed framework is depicts in Figure 1.

Script Interpreter
and Filtering

Scene
Script

Figure 1: High Level Description of the Visualization Framework.

By providing an input scene script, the synthesizer starts by process-
ing and extracting all the relevant information from the file and structures
according to the target 3D generation platform. It then maps the described
data with a direct connection with the chosen rendering API, forwarding
the 3D content generation. By taking this approach, the content gener-
ated is guaranteed to be editable by the 3D generation platform, enabling
more advanced users to start with a fast creation of 3D content that can
be edited to add more complex details. Given that the goal of this work is
to provide means to facilitate the creation of content by non experts and
lessen the initial burden of creating 3D worlds for more advanced users,
we decided to demonstrate our proposal by focusing on engines or ren-
dering software that: provide means to automatically generate content;
enable manual edition of the outcome.

To demonstrate that our proposal can indeed be used for automatic
creation of 3D content based on a script of a scene, we prepared a proof
of concept that takes a bottom-up approach. For this we have chosen
Blender [1] as it allows to define, create and manipulate arbitrary geom-
etry, materials and animations automatically, while also providing a de-
tailed API for interconnections. In this proof of concept we show that
Blender API calls can be used to directly map processed descriptions of
a scene into actual 3D content. Due to the way the Blender API is struc-
tured, we separate the 3D environment creation and manipulation into
different parts, smoothing the transition between the script and the scene.

This integration with the Blender API is illustrated in Figure 2, where the
different components of the description are forwarded to the correspond-
ing 3D definitions.

Figure 2: Virtual Scene Synthesis Process using Blender as Rendering
Engine.

To better assess the ability of our proposal to automatically generate
believable 3D environments from a script of a scene we asked 9 volun-
teers, with varying levels of mastery in 3D design and in different tools,
to compare their work with our proposal. For this evaluation we defined a
more complex scenario in a scene script that was given to the framework
and to the volunteers. The volunteers were given 1h to complete the scene
using their preferred tools. As we expected in this proof of concept, the
visual aspect of the scene generated by hand shows more details. How-
ever, the volunteers commented that for an automatically generated scene,
it produced a good starting point for further visual improvements.

Overall the volunteers commended the proposal mostly by the sub-
stantial reduction in time that it could accomplish, as the automatic gen-
eration process took only 10s to generate the scene given the script using
an Intel i5 2600 CPU. Furthermore, the automatically generated results
were considered to have a good enough quality as to allow users to under-
stand the virtual scene. When looking into more detail, a lack of precise
details such as facial features or more improved clothing, was identified.
As the intend of this work was to show the possibility of automatically
create content by using existing tools, it was within our expectations that
the proof of concept did not convey precise details.

As future work we intent to explore topics such as human parametric
models, cloth and texture generation; and explore with more detail the
possibility of expressing data extracted from a scene in a structured and
hierarchically coherent way, so that automatic generation of content can
be made even more accessible and detailed.

This work was funded by Fundação para a Ciência e Tecnologia
(FCT) with PhD Grant SFRH/BD/146400/2019.

[1] Blender Foundation. Blender, Mar 2021. URL https://www.
blender.org/. Last accessed 20 January 2021.

[2] Kevin Chen, Christopher B Choy, Manolis Savva, Angel X Chang,
Thomas Funkhouser, and Silvio Savarese. Text2shape: Generating
shapes from natural language by learning joint embeddings. In Asian
Conference on Computer Vision, pages 100–116. Springer, 2018.

[3] Ang Li, Jin Sun, Joe Yue-Hei Ng, Ruichi Yu, Vlad I Morariu, and
Larry S Davis. Generating holistic 3d scene abstractions for text-
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Look-up-Tables (LUT) are used in a huge variety of 
applications. However, a LUT has inherently a limited size and 
applying the LUT to a signal instead of applying the underlying 
mathematical function always  involves LUT application errors. 
Often, a LUT is accompanied by a pre-LUT allowing for non-
regular sampling and error shaping.  Reducing and shaping LUT 
application errors is essential for keeping errors under acceptable 
levels. In this paper, we present two new approaches that help 
into this direction. 
 
The first new approach addresses a problem inherent in the use 
of a pre-LUT. In fact, a nonlinear pre-function applied as a pre-
LUT allowing to focus LUT precision to a part of the range of 
the input signal enhancing hereby the precision for this part of 
the range. In order to not change the overall functionality, the 
inverse of the non-linear pre-function needs to be integrated into 
the calculation of the LUT entries. This necessary step causes a 
degradation of precision in a micro-scale in between two LUT 
entries.  
 
The first new approach is a specific linearization of the pre-LUT 
in order to reduce overall LUT interpolation error. First, the pre-
LUT is applied to the input signal. Then, the LUT is applied 
defined on regular grid. This regular grid is linked by the pre-
LUT to a non-regular grid in the input signal domain. The 
approach is to define the pre-LUT linearly on this non-regular 
grid. Additionally, the inverse of the linearized pre-LUT is used 
for the calculation of the LUT entries. 
 
We applied this approach to gamut mapping in transmission of 
high dynamic range (HDR) video using SL-HDR scheme (HDR 
single layer) [1] that is SDR backwards compatible. Figure 1 
illustrates a sample result showing that the proposed approach 
considerably enhances the LUT precision. 
 

 
 
Figure 1: Application of underlying mathematical function (cont. line) 
compared to application of LUT with either linearized pre-LUT (dashed 
dotted line), classical pre-LUT (dotted line) or without (dashed line) 
 
In visual tests using critical images such as shown in Figure 2 
we found that ΔE CIE 1976 is reduced from 0.68 to 0.32 in 
overall range and from 0.196 to 0.076 in darks. 
 

 
 
Figure 2 : Critical HDR frame involving smooth color slopes in the sky 
after transmission using the partially linearized pre-LUT (left of cross) 
and using classical pre-LUT (right) 
 
The second new approach addresses a problem of preserving 
negative coordinates from camera noise in cinematographic 
post-production. When ingesting camera images into ACEScg 
color space using a LUT for gamut mapping,  these noise values 
are required to be not affected by LUT interpolation errors. 
 
The second new approach is the creation of a transparent 
pathway by a specific linear section in the pre-LUT 
corresponding to a specific linear section in the LUT. These 
sections are linked to the underlying mathematical function 
representing the gamut mapping. In fact, the pre-LUT is 
perfectly linear within the range of the noise and maps the noise 
into an intermediate range of the pre-mapped signal. The main 
LUT then maps the pre-mapped signal being perfectly linear 
within this intermediate range. 
 
Figure 3 (top) shows a sample result of preserving noise using 
the proposed transparent pathway. 
 

 
 
Figure 3: A camera image with marked negative noise (red pixels) 
before (top) and after ingesting and exporting from/to ACEScg using a 
65x65x65 LUT (bottom). Only few noise (white circle) is lost since 
affected by the transition between pathway and gamut mapping function 
 
[1] High-Performance Single Layer High Dynamic Range 

(HDR), System for use in Consumer Electronics devices, 
Part 1: Directly Standard Dynamic Range (SDR), 
Compatible HDR System (SL-HDR1), ETSI TS 103 433-1 
V1.2.1 (2017-08) 
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In the past decade we are witnessing a rapid advance of cameras capa-
ble to simultaneously capture 3D information and color textures. Despite
this progress the quality of the captured image/3D sequence is not suf-
ficient to perform a complete textured 3D reconstruction of objects and
large scenes at desired level of quality. One of the main reasons for this
are different types of noise inherent to current depth sensors, their low
spatial resolution and often poor image quality of color cameras used. In
this paper we aim at simultaneous reduction of noise present in 3D mea-
surements and color texture.

The proposed method operates on multiple frames in order to exploit
spatio-temporal redundancy in both modalities. Moreover, we propose
the use of color information to search for correspondences in previous
frames used for temporal noise reduction. The first step in the proposed
method is a dense motion estimation using the DeepFlow algorithm [3],
where the algorithm extracts the most similar regions to the current one,
from a buffer containing previous frames. Noise estimates are utilized
to calculate reliabilities of the motion estimates and interpolation/filtering
weights inside the temporal filtering module. Residual noise and interpo-
lation artefacts are filtered inside the spatial filtering module.

Motion estimation has a crucial importance for temporal denoising.
Accurate motion estimation enables filtering noisy pixels using their cor-
respondences from previous frames. In the case of inaccurate motion es-
timation, temporal denoising produces motion blur artefacts around the
edges of moving objects. To avoid this, motion estimation algorithm
should be able to track large motions, since the artefacts most often occur
in such situations. Another important factor is providing a dense motion
estimates instead of block-wise motion vectors, since such motion field
enables more precision and avoids block artefacts.

This algorithm relies on SIFT descriptors to find the best matching
regions in previous frames. In order to increase robustness and handle
large motions, the algorithm operates on multiresolution pyramids. Un-
like most optical flow algorithms, DeepFlow operates from a fine level,
and proceeds towards coarser levels, built by aggregating responses of
smaller patches. The second component of the DeepFlow algorithm is
variational optical flow, which relies on the deep matching framework.
Additionally, the data term from deep matching is normalized to reduce
the influence of regions with high values of spatial derivatives. Weights
at different scales are different in order to reduce the influence of match-
ing terms at finer scales. Finally optical flow optimizes the following cost
function:

E(w) =
∫

Ω
(ED +αES +βEM)dx (1)

where ED is the data term, ES smoothness term and EM a matching term.
In order to perform joint motion estimation of depth and color we

have replaced the blue channel with normalized depth values. An exam-
ple of optical flow calculated on an "Orbit" sequence is shown in Figure
1b. Based on the estimated motion vectors we first perform motion com-
pensated temporal filtering of color and depth. The proposed temporal
filtering is performed on all noisy pixels ŝC(k, t) as follows:

ŝC
T (k) =

T+ w
2

∑
t=T− w

2

∑
h∈H

α(t,h)sC
t (h), (2)

where ŝC
T (k) is the temporally filtered version of depth and color at the lo-

cation k of the current frame. Furthermore sC
t (h) contains values from the

frame Ft at the location h. The amount of filtering is controlled through
the weighting factors α(t,h) which depend on reliability of the motion
estimation.

After temporal filtering, a certain amount of noise remains in the
depth sequence. To remove it we rely on the method from [2]. This

method starts from the assumption that image priors must not necessary
be learned from data, and that a large portion of image statistics can be
deduced from the structure of ConvNets generator. This algorithm relies
on untrained ConvNets and fits a generator network to a single degraded
image. Random initialized network weights are then fitted to a degraded
image, conform to a task dependent observation model. This way the only
information needed to perform restoration task is a degraded image and
the structure of the network for the reconstruction. The network used in
this method follows encoder-decoder architecture, with a small number of
hyper parameters. LeakyReLU is used as a non-linear function.

We evaluate the proposed method using objective quality measures,
by testing the performance using a well known “Interview” and “Orbit”
sequence as a groundtruth. This sequence, acquired using a camera pre-
sented in [1], is often using in literature for benchmarking of various depth
restoration, view interpolation and depth compression methods.

In the first experiment we have added artificial signal dependent noise,
in accordance with the sensor characteristics as shown in Figure 1c. For
an “Interview” sequence the average PSNR of was 20.47dB before the
restoration. After denoising using the proposed method, PSNR averaged
over the whole sequence was 30.41dB which is significantly improved
compared to the noisy sequence. In the case of “Orbit” sequence, the
PSNR was 20.1dB and 31.41dB after the restoration.

Figure 1: (a) Texture image associated to the scene (b) Estimated motion
vectors (c) Noisy depth map (d) Denoised depth map

[1] G. J. Iddan and G. Yahav. G.: 3d imaging in the studio (and else-
where. Proceedings of SPIE, 4298:48–55, 2001.

[2] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep Image
Prior. INTERNATIONAL JOURNAL OF COMPUTER VISION, 128
(7):1867–1888, JUL 2020. doi: {10.1007/s11263-020-01303-4}.

[3] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. Deep-
flow: Large displacement optical flow with deep matching. In 2013
IEEE International Conference on Computer Vision, pages 1385–
1392, 2013. doi: 10.1109/ICCV.2013.175.
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1 Introduction

To overcome the limitations of single image super-resolution (SR) ap-
proaches that produce blurry super-resolved images, recent research has
introduced the sub-problem of reference image super-resolution (RefSR).
Given a low resolution (LR) input image and a similar high resolution
(HR) reference image, RefSR approaches estimate a SR image. Ref-
erence super-resolution with a single reference image has been demon-
strated to improve performances over general SR methods achieving large
up-scaling with reduced visual artefacts. We generalise reference super-
resolution to use multiple reference images giving a pool of image fea-
tures and propose a novel attention-based sampling approach to learn the
perceptual similarity between reference features and the LR input. As
shown in Figure 2, given NM reference images, our approach produces a
4× SR image which is perceptually plausible and has a similar level of
detail to the ground-truth HR image. An extended version of this short
paper will appear in ICCV [2].

2 Method

The problem of multiple-reference super-resolution can be stated as fol-
lows: given a LR input ILR and a set of HR reference images {Im

re f }
NM
m=1,

estimate a spatially coherent SR output ISR with the structure of ILR and
the appearance detail resolution of the multiple-reference images. Fig-
ure 1 presents an overview of the proposed approach to achieve multiple-
reference super-resolution, which comprises the following stages.
Feature Extraction: to reduce GPU memory consumption with multiple
reference images, the LR input ILR and HR reference images {Im

re f }
NM
m=1

are divided into NI and NR sub-parts, respectively. Image features are ex-
tracted from these parts using a pre-trained VGG-19 network. The input
vector is further divided into subvectors to focus the learning attention on
input features while computing similarity maps with reference features.
Hierarchical Attention-based Similarity: the objective of this stage is
to map the features of the LR input to the most similar features of the HR
reference images. The output is a feature vector that contains the values
of these most similar reference features. A hierarchical approach of sim-
ilarity mapping is performed over l = NL levels. For every level l of the
hierarchy, a similarity map between LR input subvectors and reference
features is computed:

sl
k = φ c(ILR)∗

Pk(O
l−1,r,m
re f )

||Pk(O
l−1,r,m
re f )||

(1)

k = c if l = 1, k = r or k = m otherwise. P is the patch derived from
the application of the patch-match approach: patches of the reference fea-
tures Ol−1,r,m

re f are convoluted with subvectors φ c(ILR) of the LR input to

compute the similarity. When the similarity map sl
k is evaluated, a vector

Ol
re f containing the most similar features of Ol−1

re f is created by applying
either one of two distinct approaches:

1. Input attention mapping (l = 1): in the first level a feature vector
is created by maximising over every subvector of the input:

O1,r,m
re f (x,y) = Pk∗(φ r(Im

re f ))(x,y) (2)

k∗ = argmax
k=c

s1
k(x,y)

O1,r,m
re f (x,y) is the (x,y) value of the k∗ patch P(φ r(Im

re f )) whose
s1 is the highest among all the similarity values s1

k(x,y) for each
subvector of the LR input feature vector.

2. Reference attention mapping (l > 1): for subsequent levels of
the hierarchy, a feature vector is created by maximising a new sim-
ilarity sl

k map over the feature vector created in the previous level.

Ol,k
re f (x,y) = Ol−1,k∗

re f (x,y) (3)

k∗ = argmax
k

sl
k(x,y)
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Figure 1: Overview of the approach. Given a LR input image and NM reference images, the
approach produces an HR reconstruction of the LR input image exploiting the references.

k = r or k = m depending on which level is processed. The value
of Ol,k

re f in the (x,y) position is the value of Ol−1,k
re f with the highest

sl among all the sl
k(x,y) of Ol−1,k

re f .

The final output, obtained when the similarity mapping is performed for
all the levels of the hierarchy, is a feature vector which contains the fea-
tures of the references that are most similar to the features of the LR input.
Image Super-resolution: given the feature similarity mapping O, a gen-

erative adversarial network super-resolves the LR input to obtain the SR
output which maintains the spatial coherence of the input with the HR
appearance detail of the reference images. We modified the architecture
of the generator of [5] by eliminating the batch normalization layers since
they reduce the accuracy for dense pixel value predictions.

3 Results

We evaluate our method by comparing with state-of-the-art single RefSR
approaches. Figure 2 shows the superiority of our approach.
We also confirmed (Figure 3) that increasing the number of reference im-
ages will lead to an improvement of the performance of the approach.

LR input Ground Truth Cross-Net [6] MASA [1] SSEN [3]

Reference images TTSR [4] SRNTT [5] OURS

PSNR/
SSIM

Cross-net [6] MASA [1] SSEN [3] TTSR [4] SRNTT [5] OURS
26.00/.7576 24.84/.7311 22.71/.7169 25.59/.7645 26.42/.7738 27.49/.8145

Figure 2: Qualitative (top) and quantitative (bottom) comparisons with RefSR approaches.
LR input Ground Truth Ref. 1 Ref. 2 Ref. 4

PSNR/
SSIM

Ref. 1 Ref. 2 Ref. 4
26.77/.7882 27.30/.8087 27.49/.8145

Figure 3: Qualitative (top) and quantitative (bottom) results of using different numbers of
reference images.
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1 Introduction

Generative deep learning has been applied to a multitude of areas across
many domains, each of these areas providing a different type of data from
text, images, videos, and music [1, 3, 7, 8]. These examples use a va-
riety of different network architectures, but the goal of each is to learn
or exploit the underlying distribution of its training data. In this paper, a
novel method of generating accurate pose and animation of human point
cloud data using generative deep learning methods is presented, which
uses dense correspondence based data, in which all points within the point
cloud align with every other point in corresponding data points.

1.1 Point Clouds

Point clouds are sets of coordinates representing some multi-dimensional
data, typically in a three-dimensional Cartesian coordinate frame, repre-
senting objects, surfaces, or shapes. In these cases, each point is repre-
sented with an x, y, and z component determining the geometric coordi-
nate of each point in the cloud. These data points are usually the result of
a type of 3D scanning such as LiDAR.

As of late, PointNet [5] type architectures, which facilitate the optimal
consumption of point clouds directly by a neural network, have received
a great deal of attention, though these approaches disregard potentially
deep correspondences between points. PointNet++ [6] attempts to define
weak correspondence through sampling overlapping regions/clusters, but
this structure excludes any one to one point correspondence. If more in-
formation is known about the structure and layout of the point sets, then
it is possible to derive well-defined correspondence that isn’t specifically
within the euclidean or geodesic space. PointNet architectures and their
derivatives have been steadily applied in areas such as object detection
[4], amongst many others.

2 Methodology

This work utilises the MPI-Faust data set [2] as the input data for the
experiments and deep learning models in this paper. Each model file con-
tains exactly 6890 points, where every point corresponds with every other
point in the data-set. The data set consists of 10 unique models, of vary-
ing body structure and shape. There are 10 poses mirrored across every
model. This dense formatting of the data allows for uniform learning of
complex floating-point data through standard generative approaches, such
as a Convolutional neural network or a static fully connected network.
The MLP network is simply a fully connected network where every node
in subsequent layers is connected to the previous layer’s nodes. For the
generator, the number of nodes increases with a factor of 2 each in each
layer. The final output of the network increases to the size of the point
cloud data, 6890, which is the size required for the input to the discrim-
inator to match the real samples. The discriminator is a reverse of the
generator, leading down to a node size of 1 with a Sigmoid activation,
signaling if a sample passed in is determined real, or fake. A 1D convolu-
tional network was also tested, but proved to have difficulties learning the
symmetry of the data across different body shapes. We believe this was
due to the inherent nature of the convolutions, having a lack of connection
between those points that are close in space, but not in the data set.

2.1 Dot Based Loss Function

The idea of using the dot product is to add stability in the early stages
of training. Because the data is in dense correspondence, a pre-computed
dot product across the training data can be used to determine how well the
generated samples conform to the original data distribution. A sample of
the dot product of all of the training data was taken, where each dot prod-
uct was taken for every point in each data point. Initially the calculation

would take a point and its neighbouring point - where D = Dot(N,N+1).
Indexing all of the points proved far too inefficient to use during training,
so random jittering was employed. This was changed to a stochastic ap-
proach where now - D = Dot(N,N + step) with the step being a random
value between roughly 0.8% and 1.2% of the data set size, the dot calcula-
tion was performed until N >= data length. This helped with performance
without drastically reducing the quality of convergence to the pose shape.

Figure 1: Generated examples from the MLP GAN, each model shows
a different type of pose and body shape. Conditions were later added to
control the type of pose and body shape through prior labelling.

3 Conclusion

This paper outlined a new method of loss calculation for ordered point
cloud data, together with a deep parameter exploration of two neural net-
work architectures has resulted in a robust method of generating new hu-
man pose and human poses animation from existing point cloud data. The
idea of taking a prior dot product calculation and incorporating it into a
weighted binary cross-entropy loss function provided a large stability in-
crease when training the generator of the network. Subsequently improv-
ing the visual fidelity of human pose outputs and early training conver-
gence.
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Video is a powerful medium for storytelling. Yet, the ease with which
digital video may be synthesized, manipulated and shared (e.g. via social
media) presents a growing societal threat via the amplification of misin-
formation and fake news [2].

Videos often undergo various transformations during online distribu-
tion; changes in format, resolution, size, padding, effect enhancement etc.
We present a system for matching partial video queries robust to such
transformations. We build an inverse index of robust audio-visual fea-
tures trained using contrastive learning and a rich set of augmentations
representative of transformations typically applied to video ‘in the wild’
during online content distribution. We demonstrate our matching tech-
nique within the context of a system for tracing the provenance of video
assets, using a corpus of 100,000 videos from the VGGSound dataset [1].
We demonstrate that our system is able to match fragments of video (i.e.
partial or truncated videos) to determine not only the complete source
video but also the time offset at which that fragment exist.

To learn a robust video fingerprinting model, we propose a self su-
pervised network capable of encoding both visual and audio streams in a
video. We leverage contrastive learning and a rich set of data augmenta-
tions for videos to train our model. To enable partial video matching, we
follow a ‘divide and conquer’ approach where video is split into chunks
and each chunk is indexed and search-able within an inverted index.

We train a CNN model to project a video frame to a compact embed-
ding space. We employ the ResNet50 architecture [3], replacing the final
classifier layer with a 256-D fully connected (fc) layer that serves as the
embedding.

Similar to text search systems, we construct an inverted index that
supports video retrieval at chunk-level. We sample 1M random descrip-
tors and build a dictionary with codebook size K using KMeans. Given
a database video, we break it into chunks where each chunk is repre-
sented as a bag of codewords. The K codewords are used as entries to our
inverted index, listing all chunks in the database (a mapping between a
chunk and video ID is also stored).

An advantage of our chunking and inverted index method is that it
enables retrieval even if the query is only a segment of a database video.
As a by product, our method also supports localization of a video segment
by searching for the closest chunk in the database.

The user experience of the demo 1 is depicted in Figures 1 and 2. .
The demo allows to create a custom query video, by selecting a temporal
fragment from one of the VGGSound validation set videos and applying
an augmentation to it. Generated query is used to search within 100,000
videos from the VGGSound dataset. The green/red text box above each of
retrieval results indicates correct/incorrect retrieval results. The heatmap
bar shows the edit distance between the query sequence of codewords and
a same-length segment of the candidate video in sliding window fashion,
which could be used to represent the confidence in localization of the
query within the candidate video.

[1] H. Chen, W. Xie, A. Vedaldi, and A. Zisserman. VGG-sound: A large
scale audio-visual dataset. In Proc. Intl. Conf. on Acoustics, Speech
and Signal Processing (ICASSP), 2020.

[2] S. Gregory. Ticks or it didn’t happen. Technical report, Witness.org,
2019.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for
image recognition. In Proc. CVPR, pages 770–778, 2016.

1Video recording of the demo is available at https://youtu.be/c4Qv9IqD4J4

Figure 1: The user can generate a custom query based on any one of
the 14,196 videos from VGGSound validation set. The user is prompted
to select an augmentation type as well as start and end points of a clip
fragment.

Figure 2: After the query is generated, it is presented to the user, along
with top k results. The heatmap bars represent the confidence in localiza-
tion of the query within the candidate video.
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